Simulated annealing

Matthias Springer
Hasso-Plattner-Institut an der Universitat Potsdam

matthias.springer@student.hpi.uni-potsdam.de

December 6, 2011

Abstract

Metaheuristics are general problem solving algo-
rithms which abstract from the actual problem de-
scription. Therefore they can be easily applied to
many optimization problems. Simulated annealing is
a simple and fast metaheuristic with an analogy to
metal processing. As metal particles generate a solid
and regular structure when cooling slowing simulated
annealing seeks a low-energy solution avoiding local
optima.

1 NP-complete problems in

computer science

Since Stephen Cook’s paper The complexity of the-
orem proving procedures from 1971 computer scien-
tists know about a special class of problems which
are very difficult to solve. These problems were later
called N'P-complete problems. Richard Karp showed
in 1972 that there are some very important and often
needed problems among them, such as the 0-1 integer
programmaing problem. Many problems in the area of
business studies and operations research can be re-
duced to a combinatorial optimization problem and
then be solved by an integer programming algorithm.

Capacity planning is such a problem. Imagine a
big car company which has several production sites
all over the world. A car typically consists of about
10000 components. The difficulty is to decide which
component to produce at which site. It might be
cheap to produce components in countries which are

rich in raw materials or countries having low unit la-
bor costs but some production processes might only
be feasible in industrialized nations. Furthermore the
finished cars need to be transported to the countries
where they can be sold. By minimizing expenses and
maximizing profits good solutions can be found. Such
a problem can be expressed mathematically by a set
of integer inequalities. This mathematical represen-
tation, also called a constraint optimization problem,
is a combinatorial optimization problem and can be
solved by linear integer programming, which is a gen-
eralization of 0-1 integer programming. Thus the ca-
pacity planning problem is A/P-complete.

Unfortunately NP-complete problems can’t be
solved efficiently so far and they will most likely never
be solved efficiently. In this context efficiently de-
notes polynomial computation complexity.

2 Heuristics

Although an optimal solution to an A’P-complete
problem can’t be computed efficiently an approxi-
mation of the solution can often be found quickly.
Algorithms that solve a problem only approximately
are called heuristics.

Consider the travelling salesman problem (TSP),
which is an N'P-complete problem. Given a list of
cities (vertices) and distances (edges with costs) be-
tween the cities the task is to find the shortest route
such that every city is visited and the final city is
the origin city. The TSP can be approximated us-
ing a minimal spanning tree, where only those edges
between the cities are considered that minimize the

T T T T
s L Cost function (lower is better) i

\ /]

-2 0 2 4 6 8 10 12 14 16

solution

Figure 1: A cost function with local optima

total costs of the graph. The graph must be still
connected, of course, which means that every vertex
must be reachable from any other vertex. By travers-
ing the minimal spanning tree a solution for the TSP
can be found which is never worse than twice the
total cost of the optimal TSP route.

3 Metaheuristics for optimiza-
tion problems

While it can be very difficult to find good heuris-
tics metaheuristics are general problem solving tech-
niques which abstract from the definition of the ac-
tual problem. Metaheuristics can only be applied if
the search-space is discrete, which is true for combi-
natorial optimization problems because the number
of possible solutions is finite.

Most metaheuristics generate new solutions on the
basis of a given solution with some randomness. The
new solution is evaluated by a cost function and then
either accepted or rejected. At first glance this might
look like a greedy algorithm.

A greedy algorithm tries to improve a given solu-
tion by making elementary changes to it. After com-
paring the old solution with the new solution using
the cost function the new solution is accepted if and
only if the new solution has lower costs than the old
solution.

Most problems have a cost function that could look
like figure 1. The graph contains local optima at

r1 = —2, x5 = 3 and a global optimum at x3 = 13.
Let’s suppose we’re given a solution at x = 0. By
making elementary changes we can generate solutions
which are at close distance to the left or to the right
(neighbors). In this situation we can randomly decide
which direction to take because in both directions
the solutions have a lower cost function value. So
let’s decide to turn right. After that we’ll always
turn right since the solution would be worse when
turning left. This process continues until we reach
the local optimum z3. Now we would neither turn
left nor turn right since the solutions degrade in both
directions. The greedy algorithmus would stop at
the local optimum. A metaheuristic can avoid this
problem by accepting worse solutions with a given
probability.

4 Simulated annealing

4.1 Metal processing

Simulated annealing is a metaheuristic derived from
metal processing. For modifying the state of a me-
terial the temperature can be changed (figure 2). In
metal processing steel is heated before further pro-
cessing. The particles (atoms) inside the material
are now in a disordered state with high energy and
can move around more or less freely (viscous state).
In the end the metal is cooled slowly. If the temper-
ature decreases too fast (quenching) the material is
brittle, unstable and of low quality because the parti-
cles generate an amorphous solid state. They simply
don’t have enough time to build a stable low-energy
state. The amorphous solid state corresponds to a lo-
cal optimum because a better state could be reached
when cooling slowly.

4.2 Adaption to computer science

The process of simulated annealing can be applied
to optimiziation problems in computer science. A
solution is considered poor if the cost function has a
high value, in terms of simulated annealing called a
solution with high energy. The following pseudocode
describes the principle of simulated annealing.

« VISCOUS » STATE

- DISORDERED CONFIGURATION OF PARTICLES
- HIGH ENERGY OF THE SYSTEM

O o

OOO o

OOO O @)
O OQO
O

/ AN

annealing technique quenching technique
slow cooling very fast cooling
[CRYSTALLINE SOLID STATE | [AMORPHOUS SOLID STATE |

global minimum of energy

0
et

local minimum of energy

0
oS

Figure 2: Simulated annealing in metal processing
(Source: [1])

S < InitialSolution()
E + Costs(S)
T < InitialTemperature(S)

while 7" > 0 do
for i = 1 to Iterations(S) do
Sotd + S
S < Neighbor(S)
Epew < Costs(S)
AFE < FE,e — FE

if AE > 0 then
r < Random(0, 1)
if r < e T then
S < Soud
end if
end if
end for
T+ T-1
end while
return S

The variable S contains the current solution and
needs to be initialized before the algorithm can be-
gin. In most cases a random but valid solution is

generated but it’s also possible to start with a good
solution generated by another algorithm. That solu-
tion will be improved piece by piece.

FE contains the costs of the current function and T'
contains the current temperature. At the beginning
the temperature is initialized to a high value which
can depend on the size of the problem. Big prob-
lems sometimes require a higher starting tempera-
ture, which leads to a higher number of computation
steps.

At the each cycle of the while-loop the temper-
ate is decreased by one unit until the temperature
is zero. Within each cycle a specific number of itera-
tions take place, this number also depends on the size
of the problem. Big problems require a higher num-
ber of iterations since there are more changes needed
to generate a good solution out of an initial random
solution.

At first the current solution S is saved and a neigh-
bor solution is generated. This can be done by mak-
ing elementary modifications to the existing solution.
An elementary change to a TSP solution could be
the permutation of two cities. It’s important that
an elementary change doesn’t generate invalid solu-
tions since an invalid solution’s costs aren’t defined.
Alternatively they could be considered infinite. For
instance a TSP tour which doesn’t visit at least one
city would be invalid.

Subsequently the costs of the new solution are com-
puted. AFE contains the difference between the costs
of the new and the old solution. If the new solution
is worse than the original solution AF will be greater
than zero. Otherwise AE will be lower or equal to
zero. The algorithm now accepts or rejects the new
solution with some randomness. If the solution was
improved it’s accepted definitely. Otherwise the so-
lution is only accepted with a probability of e Te .

Figure 3 show the acceptance function e 1" at dif-
ferent temperature levels. The vertical axis indicates
the probability of accepting a solution with a given
value of AE. A solution with a probablity higher
than 1 is always accepted. At a high temperature al-
most every solution is accepted, even if the solution is
much worse than the solution before. The lower the
temperature is the more unlikely is it that a worse

2 T T
T =50, e "
L5
1 — S
05
0
2 1 0 1 2 3 4 5 6
AE
2 T)
T =10, e 7"
15
|
1
]
\
\\
| ——
05
0
2 1 0 1 2 3 4 5 6
AE
2 T —ag
T=5¢7
15
1
05 —
.0
\\
0
2 1 0 1 2 3 4 5 6
AE
2 T ap
\ o1, —
15 \
. \
\
\
\\
\
05
0 E—
2 -1 0 1 2 3 4 5 6

AE

Figure 3: Acceptance function at different tempera-
ture levels

solution is accepted. At a very low temperature sim-
ulated annealing degenerates into a greedy algorithm,
which only accepts better solutions.

By accepting worse solutions simulated annealing
can overcome local optima and probably even find
a global optimum. In figure 1 simulated annealing
might accept the right neighbor of zo = 3 at a high
temperature and overcome the hill at * = 6.8 until
the global optimum at xz3 = 13 is found.

4.3 Adavantages and disadvantages

Simulated annealing is a metaheuristic and as with
most metaheuristics the final solution can be arbi-
trarily poor. Furthermore it is nondeterministic, with
the consequence that it can generate different solu-
tions when running it multiple times. It was, how-
ever, shown that simulated annealing in theory al-
ways finds the global optimum if the temperature is
lowered infinitely slow. Thus the algorithm’s per-
formance can be increased by making the steps of
temperature reduction slower.

In contrast to algorithms which always find the op-
timal solution simulated annealing has a polynomial
computational complexity. The runtime complexity
is O(T - I - (C + G)) where T is the initial tempera-
ture and I is the number of iterations per tempera-
ture step. I usually grows linearly with the problem
size. C'is the number of computation steps required
for evaluating the cost function. Together with G,
the number of computation steps required for gen-
erating a new neighbor solution, these two steps are
the most performance critical steps. If new solutions
can be generated and evaluated very quickly the algo-
rithm can test a lot of possible solution in reasonable
time.

4.4 Variations

There is a big number of possible variations of the
simulated annealing algorithm. In this chapter two
basic variations will be discussed.

Simulated annealing performs elementary changes
to generate a neighbor solution. The algorithm can
be changed such that bigger changes are made at a

higher temperature. When solving the TSP the algo-
rithm could for instance permutate more than only
two cities at a high temperature. This variation is
based on the fact that particles with a high temper-
ature, and thus with a high energy level, can move
more quickly inside the material and overcome a big-
ger distance.

Simulated annealing as described in this paper al-
ways terminates after a specific number of elemen-
tary changes since every temperature step consists of
a fixed number of iterations. The problem is that in
most cases it’s unknown if a better solution exists.
Therefore the number of iterations per temperature
step can be made variable. The algorithm could be
changed such that the temperature is only decreased
if no better solution was found after a fixed number of
elementary changes in the current temperature step.
The algorithm is still guaranteed to terminate be-
cause eventually the algorithm either doesn’t find a
better solution after a fixed number of steps or the
algorithm reaches a global optimum which can’t be
improved anymore. However, this can take a very
long time. In the worst case each neighbor improves
the current solution only by one unit!. Hence the
computational complexity shown before doesn’t ap-
ply anymore.

5 Other metaheuristics

There are many other metaheuristics besides simu-
lated annealing. Genetic algorithms try to improve
a set of solutions by combining individual solutions
(crossover) and performing small random changes
(mutation) afterwards. As simulated annealing has
an analogy in metal processing, genetic algorithms
rely on Darwin’s survival of the fittest. Genetic al-
gorithms often generate better solutions than simu-
lated annealing but it takes a longer time until the
first suitable solution is calculated. Another interest-
ing metaheuristic is ant colony optimization, which is
often used to find paths in graphs. Ant colony optiza-
tion algorithms simulate the behavior of ants which

IThere’s only a finite number of cost function values since
the number of possible solutions is finite in combinatorial op-
timization.

spread pheromones on their way when searching for
food. Other ants follow paths with a high pheromone
amount more likely. There are very efficient imple-
mentations of ant colony optimization algorithms for
solving the TSP. However, it’s difficult to choose the
parameters wisely since there are much more param-
eters than in simulated annealing.

References

[1] Dréo, Pétrowski, Siarry, Taillard. Metaheristics
for Hard Optimization. Springer, 2005.

[2] Vocking, Alt, Dietzfelbinger, Reischuk, Schei-
deler, Vollmer, Wagner. Taschenbuch der Al-
gorithmen. eXamen.press, Springer, 2008.

[38] A. K. Dewdney. The New Turing Omnibus.
66 excursions in computer science. Henry Holt,

2001.

[4] Cook-Levin theorem — Wikipedia, The Free
Encyclopedia, 2011. [Online; accessed Novem-
ber 27, 2011]
http://en.wikipedia.org/w/index.php?
title=Cook%E2%80%93Levin_theorem&oldid=
455727368.

[5] Karp’s 21 NP-complete problems — Wikipedia,
The Free Encyclopedia, 2011. [Online; accessed
November 27, 2011]
http://en.wikipedia.org/w/index.
php?title=Karp%27s_21_NP-complete_
problems&oldid=455379220.

[6] Survival of the fittest — Wikipedia, The Free
Encyclopedia, 2011. [Online; accessed December
04, 2011]
http://en.wikipedia.org/w/index.php?
title=Survival_of_the_fittest&oldid=
462467346.

